SELECTED SOLUTIONS AND COMMENTS FOR TASKS

Grade 8 - Number Sense, Exponents
Tasks are intended to serve different purposes. When appropriate, students are encouraged to make choices, think strategically, and explain their reasoning. This document contains answers to selected problems. When answers vary, we try to offer an example when possible. When not possible, we describe what a student response could look like. The solutions in this document are not meant to represent an exhaustive list of suitable answers.

Problem of 4s (number sense)

Solutions to this problem are widely accessible on the internet. This provides a good opportunity to discuss appropriate use of tools in the class.
http://www.mathsisfun.com/puzzles/four-fours-solution.html

How Much is a Million? A Billion? A Trillion? (number sense - exponents)	
$\mathbf{1}$	(There is a typo in some versions of this task. There are 60 minutes in an hour, not 60 days.) Be sure students predict before answering questions. Answers may vary.
$\mathbf{2}$	$31,500,000$
$\mathbf{3}$	Thirty-one million, five hundred thousand
$\mathbf{4}$	3.15×10^{7}
$\mathbf{5}$	1×10^{6}
$\mathbf{6}$	1×10^{9}
$\mathbf{7}$	1×10^{12}
$\mathbf{8}$	11.7 days is about $\frac{3}{100}$ of a year.
$\mathbf{9}$	31.7 years $\mathbf{1 0}$ 31,700 years $\mathbf{1 1}$ Answers will vary $\mathbf{1 2}$ 1 million seconds ago $\rightarrow 12$ days ago. \rightarrow Answers will vary. 1 billion seconds $\rightarrow 32$ years ago. \rightarrow Answers will vary. 1 trillion seconds ago $\rightarrow 31,000$ years ago \rightarrow prehistoric times. Students may find it interesting to research on the internet events that occurred during these times.

The National Debt (number sense - exponents)

1 About 17 trillion dollars (see national debt clock). All figures from 2013.
2 \$17,000,000,000,000
3 Seventeen trillion dollars
$4 \quad 1.7 \times 10^{13}$
$5 \quad$ Population of the US is about $317,000,000$ people.
6 320,000,000
7 Three hundred twenty million people.
$8 \quad 3.2 \times 10^{8}$
9 \$53,000
10 Answers will vary.

SELECTED SOLUTIONS AND COMMENTS FOR TASKS

Grade 8 - number sense, exponents continued

Digital Memory (number sense - exponents)	
$\mathbf{1}$	1×10^{3}
$\mathbf{2}$	1×10^{-9}
$\mathbf{3}$	1×10^{6}
$\mathbf{4}$	1×10^{-12}
$\mathbf{5}$	2000 songs
$\mathbf{6}$	Terabyte hard drive holds 2 times more data.
$\mathbf{7}$	About 2.5 megabytes per photo.

Hit the Jackpot with a Catch (number sense / estimation)

To help scaffold this task, consider the following series of questions.
250 sheets of paper in a ream of paper are about 2 inches. This is one place to start when estimating. Is this a good estimate for thickness? overestimate? underestimate?

Here is a followup question to ask. Students may want to generate their own followup questions to explore as well.

The suitcase question: If a carry-on airline suitcase cannot exceed 22 in x 14 in x 9 in, will \$1M in \$100 bills fit in the suitcase? Yes. If a bill is a little more than 2.5 in x 6 in, one stack of 8 inches tall will be 1000 bills. 1000 * $\$ 100=\$ 100,000.10$ stacks will easily fit in a suitcase.

However, if you got the money in $\$ 10$ bills, it would require 50 stacks. You will have to check your luggage and hope that TSA does not open it up!

Read more about this task at:
http://wiki.answers.com/Q/How tall is 1 million dollars in 100 dollar bills\#ixzz25 RoHh6fr

SELECTED SOLUTIONS AND COMMENTS FOR TASKS
 Grade 8 - number sense, exponents continued

Sea Floor Spreading (number sense / estimation)

$1 \quad 1$ meter $=1000$ millimeters, so \# years $=\mathrm{mm} /(\mathrm{mm} / \mathrm{yr})=1000 / 25=40$. Or argue that 25 mm is one $40^{\text {th }}$ of a meter, so each year the plates move one $40^{\text {th }}$ of a meter apart, and it will take 40 years for the plates to move one meter apart.
2 One inch is approximately $2.54 \mathrm{~cm}=25.4 \mathrm{~mm}$. Thus the rate of spreading is about one inch per year.
3 Answers may vary. The diagonal is just barely less than 14 in., so the student would have to be under 14 years old.
4 The plates move apart about 100 years $\times 25$ millimeters $=2500 \mathrm{~mm}=2.5$ meters. Since each meter is a little less than 40 inches, this comes out to a little less than 100 inches, or approximately 8 feet.
5 Since the plates move a meter in 40 years, they move 1600 meters (about a mile) in about 64,000 years. Thus they would move apart another 4,500 miles in approximately $(64,000)(4500)=300,000,000$ years. (That's a long time.)

Or $4500 \mathrm{mi} \approx 7,200,000,000$ meters and $25 \mathrm{~mm}=0.025 \mathrm{~m}$, so $7,200,000,000$ meters $/ 0.025$ meters per year $=288,000,000$ years.

